Exponential-family random graph models for valued networks.
نویسنده
چکیده
Exponential-family random graph models (ERGMs) provide a principled and flexible way to model and simulate features common in social networks, such as propensities for homophily, mutuality, and friend-of-a-friend triad closure, through choice of model terms (sufficient statistics). However, those ERGMs modeling the more complex features have, to date, been limited to binary data: presence or absence of ties. Thus, analysis of valued networks, such as those where counts, measurements, or ranks are observed, has necessitated dichotomizing them, losing information and introducing biases. In this work, we generalize ERGMs to valued networks. Focusing on modeling counts, we formulate an ERGM for networks whose ties are counts and discuss issues that arise when moving beyond the binary case. We introduce model terms that generalize and model common social network features for such data and apply these methods to a network dataset whose values are counts of interactions.
منابع مشابه
Statistical Inference for Valued-Edge Networks: Generalized Exponential Random Graph Models
Across the sciences, the statistical analysis of networks is central to the production of knowledge on relational phenomena. Because of their ability to model the structural generation of networks, exponential random graph models are a ubiquitous means of analysis. However, they are limited by an inability to model networks with valued edges. We solve this problem by introducing a class of gene...
متن کاملStatistical Inference for Valued-Edge Networks: The Generalized Exponential Random Graph Model
Across the sciences, the statistical analysis of networks is central to the production of knowledge on relational phenomena. Because of their ability to model the structural generation of networks based on both endogenous and exogenous factors, exponential random graph models are a ubiquitous means of analysis. However, they are limited by an inability to model networks with valued edges. We ad...
متن کاملCurved exponential family models for social networks
Curved exponential family models are a useful generalization of exponential random graph models (ERGMs). In particular, models involving the alternating k-star, alternating k-triangle, and alternating k-twopath statistics of Snijders et al (2006) may be viewed as curved exponential family models. This article unifies recent material in the literature regarding curved exponential family models f...
متن کاملInference in Curved Exponential Family Models for Networks
Network data arise in a wide variety of applications. Although descriptive statistics for networks abound in the literature, the science of fitting statistical models to complex network data is still in its infancy. The models considered in this article are based on exponential families; therefore, we refer to them as exponential random graph models (ERGMs). Although ERGMs are easy to postulate...
متن کاملDiscrete Temporal Models of Social Networks
We propose a family of statistical models for social network evolution over time, which represents an extension of Exponential Random Graph Models (ERGMs). Many of the methods for ERGMs are readily adapted for these models, including MCMC maximum likelihood estimation algorithms. We discuss models of this type and give examples, as well as a demonstration of their use for hypothesis testing and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic journal of statistics
دوره 6 شماره
صفحات -
تاریخ انتشار 2012